“At the same time, we needed a patent”

Ivan da Costa Marques
Pós-Graduação em História das Ciências e das Técnicas e Epistemologia
Universidade Federal do Rio de Janeiro
imarques@ufrj.br

Abstract
This paper draws on the “sociology of translation” to make a critical assessment of the institutional film made by Thomson Reuters* entitled “The Innovation Lifecycle”. First, the film presents the hypothetical (imagined) development of a scientific and technological artifact, a pill, as a strictly linear process that proceeds from one stage to the next. This model of technoscientific development has proved to be false by a whole range of “laboratory studies” since the late 1970s. Today this model is in fact an a posteriori construction aimed at attributing credits for the establishment of technoscientific knowledge individualized (persons or firms). Second, and maybe more importantly, the film makes use of a hypothetical (imagined) case of salvation through a pill to popularize the benefits of technoscience in order to subtly make natural a world of enforced intellectual properties rights. This paper shows several translations enacted by the film, such as the study of the saliva of a frog translated into the effort to save millions of lives. One translation, however, is especially noteworthy, one that is subtly embedded in the film, which translates the possibility of technoscientific development into enforcement of intellectual property rights: “we developed the idea into a drug … at the same time we needed a patent”.

*“As the world's leading news and information company, we reach more than a billion people worldwide with our Reuters News coverage, and provide valuable up-to-the minute news and insights to all of the professionals we serve.” Source: http://thomsonreuters.com/ accessed April 1st, 2014.
Introduction

“The Innovation Lifecycle” exhibits a linearly chained sequence of discourses of a “patient”, a “research scientist”, a “R&D specialist”, a “drug developer” and an “intellectual property attorney”. The patient starts by saying that before saving her life the pill was manufactured by a pharmaceutical company after a scientist discovered it, and that before that it was an idea. She then invites the viewer to see what happened in between. The drug developer comes in to explain that “the pill was an idea” he had when he discovered a protein in the saliva of a frog from the Amazon. Then he presented his discovery at a symposium where a R&D specialist was in the audience. They connected, she checked the potential of the idea and asked the department of development to find out if another company was working on the idea. This task was carried out not by the scientist who leaves the scene but by the drug developer who checked competition before developing the pill, realizing that at the same time they needed a patent, which is echoed by an intellectual property attorney. Except for the patient all other characters are represented as professionals performing linearly organized very well defined specialized functions that go from an idea to a successful product in the market. In the end, the patient comes back and stresses that the delivering of the pill saved her life.

“The Innovation Lifecycle” by Thompson Reuters is a perfectly finished piece of communication that dramatizes the usefulness of science and technology. At first sight, one who watches the film would be in pain to be critical of such a way of creating knowledge. In fact, on a few occasions Brazilian students watched the film in classroom, their first reaction was uncritical admiration, confirmation and reinforcement of the marvels of scientific creativity in general. In contrast, this paper draws on the “sociology of translation” or actor-network theory” to make a critical assessment of the film.

Metodologies

“The Innovation Lifecycle” from Thompson Reuters enacts a linear construction model or understanding of scientific and technological knowledge. This linear model and, specially, its paradigmatic three phases version (discovery, development, use) have been fiercely criticized. Today it is amply recognized that this model is far too reductionist. Things do not happen in this way. The prevalent idea or visual metaphor for
technoscientific knowledge construction in recent studies of sciences-technologies-societies (science studies) is not that of a straight line (linear form) from an idea to a fact or an artefact, not even that of a tree (structural form), but that of a rizome.\(^1\) Scientific and technological knowledge construction is densely adherent to its ground, taking advantage of every accident that is part of that ground where what is social (part of Society) and what is natural (part of Nature) form a seamless web. However, notwithstanding the fierce critiques and many perfunctory citations, specially of its most distinguished author, George Basalla, the linear model still organizes many, if not the majority of expressions about sciences and technologies.

This paper draws on the “sociology of translation” or the so called “actor-network theory” to point out the kind of use made of the linear model of scientific knowledge construction when Thompson Reuters broadcasts “The Innovation Lifecycle” as picturing the process that takes one from an idea to an artefact. “Sociology of translation” or “actor-network theory” are names coined in the 1980s to refer to approaches to the study of sciences, technologies and societies that in many ways resulted from the “laboratory studies” of that decade.\(^2\) Here I will not try to offer a more inclusive picture of the sociologies that came after the “laboratory studies”. I will rather take one specific angle from them, namely, that a fact happens or actions occur when heterogeneous interests of heterogeneous and different actors are “translated” into the same proposition. In an illustrative example of a translation, Bruno Latour writes about a series of nested displacements, one in another, around the French defeat in the Franco-Prussian war in the 19\(^{th}\) century. In 1871 a French columnist offered a new rendering of the military disaster: the French were beaten because of the German soldiers’ better state of health. Then the columnist explains that this better health was due to German superiority in science, and science was superior in Germany because it was better funded. In continuation, the columnist tells his reader that the French assembly was, at that moment, cutting funds for basic science. Hence, no revenge would ever be possible with no money, since there is no science without money, no healthy soldiers without science and no revenge without

\(^1\) See {Deleuze, 1995 #419}
\(^2\) The now classic laboratory studies are (Knorr-Cetina, 1981), (Latour e Woolgar, 1986), (Lynch, 1985) and (Traweek, 1988). Very influential texts on the subject are also (Callon, 1986/1999) and (Law e Hassard, 1999).
soldiers. The columnist ends up by suggesting to the reader what to do: write to your representative to make him change his vote. Latour concludes that “the same reader who was ready to pick up his rifle and march on the Alsatian Frontier to beat the Germans, was now, with the same energy, and without having eschewed his goal, writing an indignant letter to his representative! (Latour, 1987:116-117) (emphasis in original)

Results

The scenario of the film translates the linear model into a kind of gallery that reminds a subway station where successive professionalized actors pass on the podium one to the next as if there were well demarcated successive boundaries between specialized fields.

✓ An attractive young woman makes an introductory broad translation of her salvation into a pill, a technoscientific artefact.

✓ A scientist translated the protein that he finds in the saliva of a frog from the Amazon into the salvation of millions of lives.

✓ A R&D specialist translates the salvation of millions of lives into a business opportunity.

✓ A drug developer translates the business opportunity into a pill.

✓ An IT attorney translates the pill into a brand, an intellectual property, a privately owned scientific and technological knowledge, and subtly claims this translation to be necessary.

✓ The attractive young woman comes back to close and tie up the translation of pill, a necessarily patented technoscientific artefact, into her salvation.
Discussion

The step by step series of translations are organized to provide support to the claim, never explicitly stated, that patents are necessary for the existence of salvation pills. The first translation, salvation into a pill, is too vague and provides leeway for far too many readings. It is not incompatible with state owned drug manufacturers, for example. So the other translations come in to fill the gaps. The notion of discovery comes in because it facilitates the attribution of merit, and if you have merit attributed to an isolated individual entity, be it a person or a corporation, then you are at one step of granting ownership to that isolated entity. It is the “the winner takes all” situation pointed out by Bruno Latour.³

Conclusion

In the same way that the French columnist translated the desire for revenge of the French people into more funds for scientific research, Thompson Reuters translates the desire for salvation that is present in every one of us into the defense of intellectual property rights. Just as the columnist’s text, “The Innovation Lifecycle” makes it so that the interest for a healing pill is aligned with the interest in granting patents to “drug developers”. Patents are a specific form of ordering the access to knowledge. One can not say that patents are good or that they are bad, but one can certainly say that they are not neutral. They enact distributions of access to knowledge that make very relevant differences in space and time. Very recently, Marijn Dekkers, a chief executive official from Bayer, said that that pharmaceutical company “didn’t develop its cancer drug, Nexavar (sorafenib) for India but for Western patients that can afford it.”⁴ Now, as {MacKenzie, 1990 #86} thoughtfully insists, people do not mobilize to oppose what they see as natural entities with the same energy that they mobilize against what they see as social or political situations with which they do not agree. Patents are historical, political and social entities, but this kind of translation contributes to make them natural entities,

³ See “the secondary mechanism of attribution of credit” in {Latour, 1987 #21}
so that little by little other competing forms of ordering access to knowledge have their existence in jeopardy.

THOMPSON REUTERS INTELLECTUAL PROPERTY AND SCIENCE

THE INNOVATION LIFECYCLE

The Patient - This is the pill that saved my life. Before that it was manufactured by a pharmaceutical company, and before that it was discovered by a scientist. What happened in between, before it was a pill it was an idea …

The Research Scientist – … it was an idea. While on a research trip to the Amazon, I collected the saliva of frog species, I discovered that it contained a key protein. And I thought, that protein, if synthetized, might someday save millions of lives. Using Thompson Reuters tools, I researched the protein, wrote a paper, and presented it at a symposium …

The R&D Specialist - … at a symposium where I was in the audience. We connected and agreed that the idea could make a real difference. So I did a genetic pattern analysis to check the potential of the idea and asked the department of development to find out if another company …

The Drug Developer - … another company was working on the idea. I investigated and found out that there was nothing in the drug pipeline. At least not yet. So I contracted with Thompson Reuters for a white space research report which showed me that the idea would have a market. So we developed the idea into a drug, a pill, in fact, and I looked into the regulatory requirements before we tested it, successfully. At the same time, we needed a patent …
The IP Attorney - ... we needed a patent. I conducted a global patent research on line to help me write a patent application. And my team did the trade market research to establish the uniqueness of the pill’s name. It became a brand and we protected it. We marketed and sold the pill around the world and delivered it ...

The Patient - ... and delivered it to me. And it did, It saved my life.

INTELLECTUAL PROPERTY AND SCIENCE

DISCOVER. DEVELOP. DELIVER.

THOMPSON REUTERS

Table 1 – Screen play of “The Innovation Lifecycle”
References


DELEUZE, G., GUATTARI, F. A thousand plateaus: capitalism and schizophrenia. London: Continuum International Publishing Group. 1988


