Student Generated Content in Science Communication

Dr. Klaus Rümmele
Karlsruhe Institute of Technology (KIT)
klaus.ruemmele@kit.edu

Abstract
Students may take part in science communication in a far more active way than they did so far. Usually, they are regarded as an important target group, a requested audience or an interesting topic for science communication – but not as an actor. Student-generated content – in text, video or audio – can extend the scope of means with which scientific institutions address the public. This needs suitable forms. One of them is the interactive Web magazine. The paper examines this and other examples and analyzes opportunities and risks: Does Student-generated content lead to a stronger authenticity of communication, or does it banalize it? Do scientific institutions integrating Student-generated content in their communication appear to be more open-minded, or are they in danger of losing control? In discussing these questions, the paper aims at providing a catalogue that helps science communicators to decide whether a certain item of Student-generated content is meaningful to their institution, research or teaching.

To introduce the topic, it is helpful to clarify what is meant by Student-generated content. It’s not the publication of the scientific work of students in their discipline – a prospering field, since platforms like aventinus-online.de for students in Germany doing history are on the rise. In fact, the author defines it according to Wikipedia’s specification of User-generated content: It is a) published content, b) a creative personal contribution and c) a creation beyond professional routines. This leads quickly to a main challenge: How can a creation beyond professional routines be integrated into the scientific communication of institutions, which generally depends and relies on the experience of
professionals and their self-conception as gatekeepers of information and opinion? The answer is: PR departments need tools to calculate risks and chances of Student-generated content in order to decide, which of the various forms they may use.

In order to arrange a set of these tools, the author analyzes several forms of Student-generated content in the context of science communication that are all published online, but base on different media: text, photo, video, audio. There is also a variety in the platform on which the chosen examples of Student-generated content are published: webpage, web magazine, video portal, Social Media. On the one hand, these examples are considered with regard to content and form. On the other hand, the author looks at the reactions of users, from the scientific institution as well as from the public, and producers of Student-generated content. To come to a conclusion, the author discusses his results on the ground of current trends in scientific communication as discussed, for example, at the Journées Hubert-Curien in Nancy 2012 (Baranger, Schiele, Science Communication today, 2013).

The crucial point is that professional actors in science communication have to deliberate about whether a certain form of content created by students makes sense by terms of information quality, public understanding of science or reputation. This may become clearer when looking at some examples: The first one is StuSer. That is the name of a registered association running the web platform www.stuser.de, where students can pose questions on universities, courses and formalities, other students write the answers. The Karlsruhe Institute of Technology (KIT) integrated the link on its webpage – on the one hand, that brought about many positive reactions of young people, who found it comfortable to switch easily from an official description of courses to the comments of those who had experienced the courses. To these young people, KIT appeared to sound more authentic and more aware of the needs of coming students. On the other hand, professional advisers at KIT were skeptical about the correctness of the statements and explanations on the platform and feared a loss of control.

Another double-edged sword for science communication is the integration of Student-generated content via Social Media. It’s easy to post links to a student’s action, event or webpage, as can be seen in the second example: the way Massachusetts Institute of Technology (MIT) promotes hearts and flowers the MIT Origami Club created for
Valentine’s Day on Facebook (s. Figure 1). But when you follow the links, you may find advertisements, jokes and invitations. All funny and entertaining, quite a lot of people liked and commented it. Still, some readers may be confused because they expect the renowned and influential institution MIT to act more seriously, even on Facebook. They do not find all kinds of content appropriate for the institution – for them, everyday things, banalities, trivialities do not suit in this context.

![Figure 1: Massachusetts Institute of Technology on Facebook](image)

This is even more the case when professional actors in science communication integrate text, photo or video students have produced. This is the case in the third example: Students at the Universität Passau published a video blog during the media days 2011 – under the URL video.uni-passau.de. To the public, this indicated that the video was part of the University’s communication. The video shows amateur actors, hand-held camera, spontaneous actions and improvisation. It is very lively and funny – comments on the video group’s website suggest that a rather young audience appreciates the nonchalance and the self-mockery of the video. They understand the language used in the
video – it’s a communication on eye level. But, still, the video doesn’t meet the aesthetic and technical quality which usually is required in professional science communication.

The fourth and most closely example to be analyzed is clicKIT, the KIT interactive Web magazine. In 2013, it has been nominated for the German Award for Online Communication – and one of its characteristics is that the clicKIT editorial staff depicts several ways, in which the students can participate. First, the editorial staff offers the students training in communication and media techniques: It instructs students, who write articles for the Web Magazine, produce audio files and take photographs. They join the editorial meetings and suggest topics. Thus, these students are part of the team – still, the way they work on topics is an expression of their student point of view and enriches the magazine as well as the KIT communication as a whole. Secondly, their opinion is part of the Web magazine itself. Each issue contains polls to present statements and thoughts of the students. Very often they’re presented in a multimedia manner that corresponds to the communicative likings of many young people.

Thirdly, students have the chance to choose topics by proposing them and voting for them on the KIT Facebook page. All the KIT Social Media Activities are linked to the Web Magazine – this, fourthly, has also the effect, that the students can easily give feedback. So far, these opportunities have not mobilized masses – on average, 20 to 50 students take part. But their comments and the number of likes show that they appreciate this possibility. Moreover, the editorial staff’s access to urgent topics, which are relevant to students, becomes faster. It is able to address the students, being a main target group, more exactly. They may participate openly in debates on teaching topics – this can lead to the point that the scientific institution appears to be open-minded and willing to interact. On the other hand, this can also result in endless discussions, harsh criticism and a stain in the public appearance of the institution.

Fifthly, the magazine also uses videos and audios to show talents of the students that go beyond their discipline – not all of them are produced by the professional communication team, some of them come from the students themselves. The editorial staff embeds their content after having watched or listened to it and judged it. In the next step, the editorial staff has started to offer them the possibility to upload their content directly to defined places in the Web magazine. At this point, the Web magazine begins
to integrate advanced forms of Student-generated content. On the one hand, this makes the magazine appear more authentic and modern. It includes content in a more direct form, without an adaptation by the editorial office as an interstation. On the other hand, this brings about some risks: Is there enough aesthetic quality, when an amateur video shows a party of young company’s founders, with the sound failing several seconds? In addition, some students just refuse to cooperate, they don’t want to be part of institutional science communication. Moreover, they feel some kind of pressure, because they fear that their own publications loose readers, hearers and viewers. Others may use the opportunity to polemicize or to communicate political messages. They just try to place their topics and their perspectives prominently. And furthermore, if the editorial office denies Student-generated content, because of aesthetic deficits or other reasons, this may cause frustration among the students who have learned about the approach of integrating Student-generated content.

But must that have the consequence of a total rejection of Student-generated content? Or is it an implication, professional actors might easily accept when recognizing the positive effects Student-generated content brings about in science communication? This second attitude reflects a change in institutional communication – not only, but also scientific –, in which the author believes (Rümmele, “Institutionelle Wissenschaftskommunikation 2.0”, 2012): It develops from one-way communication, which is more or less controllable, to community communication, which is rather open. To put it in a broader context, one can follow Bernard Schiele, Communication scientist from Montreal (Baranger, Schiele, Science Communciation Today, 2012, p. 312), who is convinced that “new forms of participatory public engagement are emerging.” This development, says Schiele, is carried and accelerated by the World Wide Web (Baranger, Schiele, Science Communciation Today, 2012, p. 314): “With the internet, everyone has the world within his reach, so to speak. Such a possibility supports the thesis that each and every one of us is a potential communicator.” To Schiele’s opinion, communication directs itself no longer just to the public as a whole, but to small groups that want to interact.
Still, there is one question: Do Press Officers and Online Editors have to support this development by, in our case, opening official web magazines, online platforms and social networks to students publishing their information, opinions and media content without editing it? When looking at the media behavior of many people, the answer is: Yes, they have to. They reach important target groups in a better way than by classical means of unidirectional communication. It is important, that they make it easy for Communities to talk about the scientific institution and discuss with her and that they do not act in communication as if they would be condescending towards the communities. This could be one of several new roles professional actors in science communication have to be prepared for in the age of new media. One result of the European Communication Monitor 2013, a transnational survey on the strategic communication worldwide, indicates that they are willing to do so: The majority of more than 2500 communication professionals, who participated in the survey, is convinced that people and communities outside the institution who are active on the web are relevant gatekeepers for their organization.

Figure 2: Digital gatekeepers in Western Europe: Perceived relevance and strategies
That doesn’t mean that they have to use every opportunity or open up every communication channel for all user-generated content, in our case from students. However, it is worthwhile to analyze thoroughly if a certain item of Student-generated content may fit into a specific form of professional scientific communication. The following catalogue may help. It summarizes criteria the author discussed when looking at the examples above:

Student-generated content makes scientific communication …

<table>
<thead>
<tr>
<th>Chances</th>
<th>Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>… more social</td>
<td>… more arbitrary</td>
</tr>
<tr>
<td>… faster</td>
<td>… less serious</td>
</tr>
<tr>
<td>… more authentic</td>
<td>… less clear</td>
</tr>
<tr>
<td>… more interactive</td>
<td>… less confidential</td>
</tr>
<tr>
<td>… more individual</td>
<td>… less popular</td>
</tr>
<tr>
<td>… more vivid</td>
<td>… less controllable</td>
</tr>
<tr>
<td>… linked in a better way</td>
<td>… worse in quality</td>
</tr>
<tr>
<td>… participative</td>
<td>… easy to misuse</td>
</tr>
<tr>
<td>… more exact when addressing target groups</td>
<td>… counterproductive</td>
</tr>
</tbody>
</table>

As a conclusion, it seems to make sense that professionals of science communication, especially when working for institutions, regard the integration of Student-generated content as an option of communication that doesn’t lead to chaos, but to dialogue; that reduces control, but intensifies exchange. It is important to check each possibility individually on the basis of a clear catalogue of criteria. In some cases, the risks of Student-generated content will prevail. In all other cases, however, professionals may find ways to let these new voices contribute to science communication. Students, then, would be no longer just a target group, but an interaction group.
References

Books

Book chapter

Internet article

Massachusetts Institute of Technology on Facebook, https://www.facebook.com/MITnews [April 1, 2014].
Videos

http://video.uni-passau.de/video/Medientage-Passau-2011---Video-Blog-
%252301/116de24683c4a3478c3b3d1b4e120d8a [April 3, 2014].